Extremality conditions for isolated and dynamical horizons

نویسندگان

  • Ivan Booth
  • Stephen Fairhurst
چکیده

A maximally rotating Kerr black hole is said to be extremal. In this paper we introduce the corresponding restrictions for isolated and dynamical horizons. These reduce to the standard notions for Kerr but in general do not require the horizon to be either stationary or rotationally symmetric. We consider physical implications and applications of these results. In particular we introduce a parameter e which characterizes how close a horizon is to extremality and should be calculable in numerical simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The first law for slowly evolving horizons.

We study the mechanics of Hayward's trapping horizons, taking isolated horizons as equilibrium states. Zeroth and second laws of dynamic horizon mechanics come from the isolated and trapping horizon formalisms, respectively. We derive a dynamical first law by introducing a new perturbative formulation for dynamic horizons in which "slowly evolving" trapping horizons may be viewed as perturbativ...

متن کامل

Two physical characteristics of numerical apparent horizons

This article translates some recent results on quasilocal horizons into the language of (3 + 1) general relativity so as to make them more useful to numerical relativists. In particular quantities are described which characterize how quickly an apparent horizon is evolving and how close it is to either equilibrium or extremality.

متن کامل

Quantum Geometry of Isolated Horizons and Black Hole Entropy

Using the classical Hamiltonian framework of [1] as the point of departure, we carry out a non-perturbative quantization of the sector of general relativity, coupled to matter, admitting non-rotating isolated horizons as inner boundaries. The emphasis is on the quantum geometry of the horizon. Polymer excitations of the bulk quantum geometry pierce the horizon endowing it with area. The intrins...

متن کامل

Order Reduction of Optimal Control Systems

The paper presents necessary and sufficient conditions for the order reduction of optimal control systems. Exploring the corresponding Hamiltonian system allows to solve the order reduction problem in terms of dynamical systems, observability and invariant differential forms. The approach is applicable to non-degenerate optimal control systems with smooth integral cost function. The cost functi...

متن کامل

Spherically Symmetric Dynamical Horizons

We study spherically symmetric dynamical horizons (SSDH) in spherically symmetric Einstein/matter spacetimes. We first determine sufficient and necessary conditions for an initial data set for the gravitational and matter fields to satisfy the dynamical horizon condition in the spacetime development. The constraint equations reduce to a single second order linear “master” equation, which leads ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008